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In this article we present a method to construct gradings of Lie algebras. It requires the

existence of an abelian inner ideal B of the Lie algebra whose subquotient, a Jordan pair,

is covered by a finite grid, and it produces a grading of the Lie algebra L by the weight

lattice of the root system associated to the covering grid. As a corollary one obtains a

finite Z-grading L = L−n ⊕ · · · ⊕ Ln such that B = Ln. In particular, our assumption on B

holds for abelian inner ideals of finite length in nondegenerate Lie algebras.

1 Introduction

A finite Z-grading of a Lie algebra L over a unital commutative ring Φ is a nontrivial Z-

grading with finite support, i.e., there exists a positive natural number n and a family

(Li)−n≤i≤n of Φ-submodules of L such that

L =

n⊕
i=−n

Li, L−n + Ln �= 0, [Li, Lj] ⊂ Li+j
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for all i, j with the understanding that Li+j = 0 if |i + j| > n. In this case, one says that L

is (2n + 1)-graded. Simple Lie algebras that have a (2n + 1)-grading and that are defined

over a field of characteristic ≥ 4n + 1 or 0 were classified by Zelmanov [31] up to the

description of finite Z-gradings of simple associative algebras with involutions. This

description was later given by Smirnov [29, 30].

The main result of this article is a method to construct finite Z-gradings of Lie

algebras. Roughly speaking, we show that a sufficiently nice “top” Ln creates a (2n + 1)-

grading of L.

What are nice “tops”? The submodule Ln of any (2n+1)-grading of L is an abelian

inner ideal in the sense of Benkart [3], i.e., a Φ-submodule B satisfying [B, [L,B]] ⊂ B

and [B,B] = 0. The pair (Ln, L−n) of the “wings” of the (2n + 1)-grading is a Jordan pair

with respect to the Jordan triple products {x, y, z} = [[x, y], z]. It is enough to specify

the Jordan triple product since we will assume throughout the paper that 2 and 3 are

invertible in Φ, and from Section 4 on that 5 too is invertible. It is these two algebraic

structures, abelian inner ideals in Lie algebras and Jordan pairs, that form the basis of

our approach.

We do not require that we are given submodules Ln, L−n of L. Rather, we associate

a Jordan pair S to any abelian inner ideal B of L, which for the case of a nondegenerate

(2n + 1)-graded L and B = Ln is isomorphic to (Ln, L−n). (We recall that a Lie algebra

is nondegenerate if [x, [L, x]] = 0 implies x = 0.) This works as follows. Mimicking the

definition of the kernel of an inner ideal in a Jordan pair [18], we define the kernel of

an abelian inner ideal B in a Lie algebra L as KerL B = {x ∈ L : [B, [x,B]] = 0}. Then

S = (B, L/KerL B) is a Jordan pair, called the subquotient of B, with respect to the Jordan

triple products induced by the double commutator of L. That a sufficiently nice “top” Ln

creates a (2n + 1)-grading of L can now be expressed more precisely.

Theorem 1.1. Let L be a Lie algebra and suppose B is an abelian inner ideal of L whose

subquotient S is covered by a finite grid. Then there exists a finite Z-grading, say a

(2n + 1)-grading, such that B = Ln, KerL B = L−n+1 ⊕ · · · ⊕ Ln and (Ln, L−n) ∼= S. �

For the nonexpert in Jordan theory we mention that a grid in a Jordan pair is a

special family of idempotents, see [22, 26] for details. The assumption on S is for example

fulfilled in case the subquotient is a nondegenerate and Artinian Jordan pair, since these

can be characterized as those Jordan pairs that are covered by a finite division grid [[18];

Theorem 5.2]. And as we show in Proposition 3.5, the subquotient of an abelian inner

ideal is always nondegenerate and Artinian if L itself is nondegenerate and B has finite
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length, i.e. every proper chain of inner ideals of L contained in B is finite. Let us now

discuss some of the techniques and concepts used in the proof of the result.

• Idempotents: Idempotents in Jordan pairs are of course a well-known

concept. Motivated by the Jordan pair case, we call a pair of elements

(e+, e−) in L×L, L a Lie algebra, an idempotent of L if (e+,he = [e+, e−], e−)

is an sl2-triple in L and (ad e+)3 = 0. Then (ad e−)3 = 0 and ad he is

diagonalizable with eigenvalues 0,±1,±2, i.e., L = L−2⊕L−1 ⊕L0⊕L1 ⊕L2

for the eigenspaces Li of ad he (it is here that we need our assumption that

5 is invertible in Φ). As in Jordan theory, the Peirce decomposition of one

idempotent can be refined by considering a finite family E of idempotents

in L which is compatible in the sense that [he,hf ] = 0 for e, f ∈ E.

These definitions are well behaved with respect to subquotients: If E is

a compatible family of idempotents in L and B is an abelian inner ideal

of L such that e+ ∈ B for all e ∈ E, then the canonical image of E in

the subquotient is a compatible family of idempotents in the Jordan pair

sense. It is crucial for our work that we can also go backwards. Indeed,

the essence of Proposition 5.4 is that any finite family of compatible

idempotents in S can be lifted to a compatible family of idempotents in

L. We note that the lifting of a single idempotent is essentially a graded

version of the Jacobson-Morozov Lemma.

• 3-graded root systems: The combinatorics of grids in Jordan pairs is best

described using 3-graded root systems, see [[19]; §18]. To any grid G

in a Jordan pair one can associate a 3-graded root system R = R1 ∪
R0 ∪ R−1 and an enumeration of the grid as G = (gα : α ∈ R1) such

that the relations between the idempotents in G are described by the

combinatorics (angles) of R. For example, the idempotents gα, gβ are

orthogonal if and only if the roots α,β are orthogonal. In general, the

root system R is locally finite, but for Theorems 1.1 and 1.2 we will only

be using finite grids and hence finite root systems. For the root system R

we denote by P(R) the abelian group of the weights of R. We recall that

R ⊂ P(R) canonically. Theorem 1.1 is a corollary of the following result.

Theorem 1.2. Let B be an abelian inner ideal of a Lie algebra L whose subquotient

S = (B, L/KerL B) is covered by a finite standard grid G with associated 3-graded root

system R = R1 ∪ R0 ∪ R−1.
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Then G lifts to a compatible family E = (eα : α ∈ R1), eα = (e+
α , e

−
α), of idempotents

in L whose joint Peirce spaces induce a P(R)-grading of L:

L =
⊕

ω∈P(R)

Lω, where Lω = {x ∈ L : [hα, x] = 〈ω,α∨〉x for all α ∈ R1}

and hα = [e+
α , e

−
α ]. Moreover,

B =
⊕
ω∈R1

Lω, KerL B =
⊕

ω �∈R−1

Lω.

The subalgebra g generated by all e±α is R-graded in the sense of [26]. If Φ is a field of

characteristic 0 then g is a finite-dimensional split semisimple Lie algebra of type R with

splitting Cartan subalgebra h =
∑

α∈R1
Φhα and is isomorphic to the Tits-Kantor-Koecher

algebra of the Jordan pair generated by G. �

Our assumption that G be a standard grid is not serious (but necessary for the

second part of Theorem 1.2), since any covering grid can be replaced by a covering

standard grid with the same Peirce spaces and associated 3-graded root system. We

point out that the P(R)-grading of L constructed above has many of the features of a

grading of L by a root systems, as defined by [2], [5] and [26], see 5.2.

The support supp L = {ω ∈ P(R) : Lω �= 0} of the P(R)-grading of L contains R but

possible more weights. We construct a group homomorphism ϕ : P(R) → Z such that for

a suitable positive integer n we have |ϕ(ω)| ≤ n for ω ∈ supp L with ϕ(ω) = n ⇔ ω ∈ R1.

One then obtains a (2n + 1)-grading of L and hence a proof of Theorem 1.1 by putting

Li =
⊕

ϕ(ω)=i Lω for −n ≤ i ≤ n. We note that in case of an irreducible R, equivalently a

simple subquotient S, the number n above can be chosen as the Coxeter number h of R.

Namely, in this case we can take ϕ(ω) =
∑

α∈R1
〈ω,α∨〉, and we have

∑
α∈R1

〈β,α∨〉 = h for

all β ∈ R1.

Applications: It is an immediate corollary of Theorem 1.1 that C = L−n is another

abelian inner ideal with KerL C = L−n ⊕ · · · ⊕ Ln−1. Thus, the abelian inner ideal B is

complemented by C in the sense that L = B ⊕ KerL C = C ⊕ KerL B (Theorem 6.1). This is

essential for characterizing Lie algebras in which every inner ideal is complemented [11].

Using the Tits-Kantor-Koecher construction we can give another application of

our results, namely to inner ideals in Jordan pairs (Corollary 6.4): If the subquotient of

an inner ideal B of a Jordan pair V is covered by a finite grid, it can be lifted to a finite

grid in V which induces a finite Z-grading of V. Moreover, B is complemented in the sense

of [18].
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The paper is organized as follows. After a review of some concepts from the

theory of Lie algebras and Jordan pairs in Section 2, we study the kernel and subquotient

of an inner ideal in a Lie algebra in Section 3. In Section 4 we review and prove some

results for 3-graded root systems. The main work is done in Section 5, in particular in

Proposition 5.4 and Theorem 5.5, which together provide a proof of Theorem 1.2. For

the applications in Jordan pairs, it is necessary to prove parts of these results in the

graded setting. The final Section 6 is devoted to the applications mentioned above. We

also discuss there some examples illustrating the relationship between abelian inner

ideals and finite Z-gradings of Lie algebras.

2 Preliminaries

2.1 Basic notions

Throughout this article we will be dealing with Lie algebras, Jordan algebras and Jordan

pairs over a ring of scalars Φ containing µ · 1Φ ∈ Φ× for µ = 2, 3 where Φ× denotes the

invertible elements of Φ. So both the Jordan algebras and Jordan pairs considered here

are linear. From Section 5 on we will also assume that 5 · 1Φ is invertible in Φ.

We will use standard notation. For example, the product in a Lie algebra will be

denoted [x, y], while ad x or adx is the adjoint map determined by x. We will also use the

abbreviation [x1, x2, . . . , xn−1, xn] = (ad x1) (ad x2) · · ·ad xn−1(xn).

For Jordan pairs V = (V+,V−) we will follow the terminology of [16]. In particu-

lar, it follows from [[16]; p. 55] that a pair V = (V+,V−) of Φ-modules with trilinear maps

{· · ·} : Vσ × V−σ × Vσ → Vσ, σ = ±, is a Jordan pair if and only if the triple products

satisfy the two conditions:

{x, y, z} = {z, y, x} (J1)

{u, v, {x, y, z}} + {x, {v,u, y}, z} = {{u, v, x}, y, z} + {x, y, {u, v, z}}. (J2)

2.2 Nondegeneracy and primeness

Let V = (V+,V−) be a Jordan pair. An element x ∈ Vσ, σ = ±, is called an absolute zero

divisor if Qx = 0, and V is said to be nondegenerate if it has no nonzero absolute zero

divisors, semiprime if QB±B∓ = 0 implies B = 0, and prime if QB±C∓ = 0 implies B = 0 or

C = 0, for any ideals B = (B+,B−), C = (C+,C−) of V. Similarly, given a Lie algebra L, x ∈ L

is an absolute zero divisor if ad2
x = 0, L is nondegenerate if it has no nonzero absolute
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zero divisors, semiprime if [I, I] = 0 implies I = 0, and prime if [I, J] = 0 implies I = 0 or

J = 0, for any ideals I, J of L. A Jordan pair or Lie algebra is strongly prime if it is prime

and nondegenerate.

2.3 Inner Ideals and Jordan Elements

Given a Jordan pair V = (V+,V−), an inner ideal of V is any Φ-submodule B of Vσ such

that {B,V−σ,B} ⊂ B. Similarly, an inner ideal of a Lie algebra L is a Φ-submodule B of L

such that [B, L,B] ⊂ B. An abelian inner ideal is an inner ideal B which is also an abelian

subalgebra, i.e., [B,B] = 0. In the following we will mainly consider abelian inner ideals.

This is not such a great restriction as it may look at first sight since in a nondegenerate

simple Artinian Lie algebra every inner ideal B �= L is abelian ([[4]; Lemma 1.13]).

For b ∈ L the following conditions are equivalent [[4]; Lemma 1.8]:

(i) ad3
b = 0,

(ii) there exists an abelian inner ideal B containing b ∈ B.

Any element b ∈ L satisfying these two conditions is called a Jordan element. Any Jordan

element b gives rise to the abelian inner ideals [b] := [b, b, L] and (b) := Φb + [b].

Lemma 2.1. Let I be an ideal of a Lie algebra and x ∈ I a Jordan element of I. For any

a, b ∈ I, we have

(i) X2AX = XAX2,

(ii) X2AX2 = 0,

(iii) ad2
X2(a) = X2A2X2,

(iv) X2ABX2 = X2BAX2 = adX2(a)adX2(b)

where capital letters denote the adjoint maps with respect to those elements. �

Proof. (i), (ii), (iii) follow as in [[4]; Lemma 1.7 (i), (ii), (iii)] since X3(a) = 0. For (iv) we

use (ii) and get X2ABX2 = X2[A,B]X2 + X2BAX2 = X2ad[a,b]X2 + X2BAX2 = X2BAX2, and

from (iii) that ad2
X2(a+b) = X2ad2

a+bX2. But ad2
X2(a+b) = X2A2X2 + X2B2X2 + 2adX2(a)adX2(b)

(since the operators adX2(a) and adX2(b) commute because the inner ideal [x, [x, I]] is

abelian), and X2ad2
a+bX2 = X2A2X2 + X2B2X2 + 2X2ABX2. Hence, X2ABX2 = adX2(a)adX2(b),

as required. �

Remark 2.2. Let (V+,V−) be a pair of Φ-submodules of a Lie algebra L such that

{x, y, z} := [[x, y], z] ∈ Vσ for all x, z ∈ Vσ and y ∈ V−σ. It is a straightforward consequence

of the Jacobi identity that the pair V = (V+,V−) satisfies the identity (J2) defining a Jor-

dan pair, but not necessarily the identity (J1). However, both identities are fulfilled for a

pair (B,C) of abelian inner ideals, and hence (B,C) is a Jordan pair.
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2.4 Gradings

Let L be a Lie algebra and let Γ be an abelian group, written additively. We say that L is

graded by Γ and call this a Γ -grading of L if there exists a decomposition L =
⊕

γ∈Γ Lγ ,

where the Lγ are Φ-submodules of L, satisfying [Lγ , Lδ] ⊂ Lγ+δ for all γ, δ ∈ Γ . A finite

Z-grading is a nontrivial Z-grading such that the support set supp L = {γ ∈ Z : Lγ �= 0}
is finite. Hence L = L−n ⊕ · · · ⊕ Ln for some positive integer n. If Ln + L−n �= 0, we will call

such a grading a (2n + 1)-grading. Note that if L is nondegenerate then both Ln and L−n

are nonzero.

Let L =
⊕

γ∈Γ Lγ be a Γ-graded Lie algebra. A Φ-submodule M of L will be called a

graded submodule if M =
⊕

γ∈Γ (M ∩ Lγ), in which case we will write M =
⊕

Mγ where

Mγ = M ∩ Lγ . An inner ideal B is graded if its underlying submodule is graded. We will

refer to the elements of Lγ , γ ∈ Γ , as homogeneous elements. We will say that L is graded-

nondegenerate with respect to Γ if it does not have homogeneous absolute zero divisors.

If ∆ is another abelian group, we will say that a ∆-grading L =
⊕

δ∈∆ Lδ is

compatible with the given Γ-grading if, putting Lγ
δ = Lγ ∩ Lδ, we have Lγ =

⊕
δ∈∆ Lγ

δ for

all γ ∈ Γ , or equivalently Lδ =
⊕

γ∈Γ Lγ
δ for all δ ∈ ∆. Of course, two compatible Γ- and

∆-gradings are the same as a Γ ⊕∆-grading, but it is usually more instructive to keep the

two gradings apart.

Similarly, a Γ -grading of a Jordan pair V = (V+,V−) consists of decompositions

Vσ =
⊕

γ∈Γ Vσ
γ of Vσ with Vσ

γ being Φ-submodules of Vσ such that {Vσ
γ ,V

−σ
δ ,Vσ

ε } ⊂ Vσ
γ+δ+ε

for all γ, δ, ε ∈ Γ . Graded inner ideals of a Γ-graded Jordan pair and homogeneous

elements are defined analogously to the case of Lie algebras. The proof of the following

lemma is a simple verification, left to the reader.

Lemma 2.3. Let L =
⊕

γ∈Γ Lγ be a Γ-graded Lie algebra with a compatible (2n + 1)-

grading L = L−n ⊕ · · · ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ · · · ⊕ Ln. Then V = (Ln, L−n) is a Γ-graded Jordan

pair with respect to (V±)γ = Lγ
±n and the triple products {x, y, z} defined in Remark 2.2.

Moreover,

(i) a Φ-submodule B of L±n is an abelian inner ideal of L if and only if it is an

inner ideal of V, and

(ii) if L is graded-nondegenerate with respect to Γ or nondegenerate, then so is

the Jordan pair V. �

2.5 Socle and chain conditions

(i) Recall that the socle of a nondegenerate Jordan pair V is SocV = (SocV+,

SocV−) where SocVσ is the sum of all minimal inner ideals of V contained
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in Vσ [17]. The socle of a nondegenerate Lie algebra L is SocL, defined as

the sum of all minimal inner ideals of L [7].

(ii) By [[17]; Theorem 2] for the Jordan pair case and [[7]; Theorem 3.6] for the

Lie case, the socle of a nondegenerate Jordan pair or Lie algebra is the

direct sum of its simple ideals. Moreover, each simple component of SocL

is either inner simple or contains an abelian minimal inner ideal [[4];

Theorem 1.12].

(iii) A Lie algebra L or Jordan pair V is said to be Artinian if it satisfies the de-

scending chain condition on all inner ideals. While any nondegenerate

Artinian Jordan pair coincides with its socle (by the elemental charac-

terization of the socle, [[17]; Theorem 1]), for a nondegenerate Artinian

Lie algebra L we only have that L has an essential socle in the sense that

every nonzero ideal has a nonzero intersection with the socle [[7]; Corol-

lary 3.7 and Remark 3.8].

3 Kernels and subquotients

3.1 Kernels

Let V = (V+,V−) be a linear Jordan pair and B ⊂ V+ an inner ideal of V. Following [18],

the kernel of B is the set KerVB = {x ∈ V− : {B, x,B} = 0}. Then (0,KerVB) is an ideal of

the Jordan pair (B,V−) and the quotient S = (B,V−)/(0,KerVB) = (B,V−/KerVB) is called

the subquotient of V with respect to B. The kernel and the corresponding subquotient of

an inner ideal B ⊂ V− are defined similarly.

The analogous versions of all of these results hold for inner ideals in Lie al-

gebras, if we replace the Jordan triple product {x, y, z} by the left double commutator

[[x, y], z], cf. Remark 2.2.

Definition 3.1. Let B be an inner ideal of a Lie algebra L. The kernel of B is the Φ-

submodule KerLB = {x ∈ L : [B,B, x] = 0}.

In the following lemma we will consider the pair (L, L) of a Lie algebra L with

respect to the triple products of Remark 2.2. We will use the concepts of subpairs, ideals

and quotients which are defined in an obvious way, see [[16]; 1.3] for the case of Jordan

pairs.

Lemma 3.2. Let B be a Φ-submodule of the Lie algebra L. Then (B, L) is a subpair of (L, L)

if and only if B is an inner ideal of L.
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In the remainder of this proposition we will assume that B is an inner ideal of L

and consider the subpair (B, L) of (L, L). Then the following holds.

(a) (0,KerL B) is the largest among all ideals I = (I+, I−) of the pair (B, L) such

that I+ = 0. Moreover, K = KerL B satisfies

[K, L,B] + [L,B,K] + [B,K, L] ⊂ K. (3.1)

Hence the pair S = (B, L/KerL B), called the subquotient of B, has well-

defined triple products

{m x̄ n} = [[m, x],n] and {x̄ m ȳ} = [[x,m], y]

where m,n ∈ B, x, y ∈ L and L → L/KerL B : x → x̄ is the canonical map.

(b) S always satisfies the 5-linear identity (J2), and is a Jordan pair if B is an

abelian inner ideal.

(c) If B is an abelian inner ideal then [B, L] ⊂ KerL B and KerL B = {x ∈ L :

[b, b, x] = 0 for all b ∈ B}.

(d) Assume L is a Γ-graded Lie algebra and B is a graded abelian inner ideal.

Then KerL B is a Γ-graded Φ-submodule, and S is a Γ-graded Jordan pair

with respect to the quotient grading induced by the Γ-grading of L. �

The proof is a straightforward exercise which will be left to the reader.

Proposition 3.3. Let L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln be a (2n + 1)-grading of a Lie algebra L

with associated Jordan pair V = (Ln, L−n).

(i) Let B ⊂ Ln be an inner ideal of V. Then the kernel of the abelian inner ideal B

of L is

KerLB = KerVB ⊕ L−(n−1) ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln.

(ii) If L is nondegenerate, then

KerLLn = L−(n−1) ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln,

and the Jordan pairs (Ln, L−n) and (Ln, L/KerLLn) are isomorphic.
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In particular, any nondegenerate Jordan pair V = (V+,V−) is a subquotient,

namely isomorphic to the subquotient of its Tits-Kantor-Koecher algebra with respect

to the inner ideal V+ of V. �

Proof. (i) As pointed out in Lemma 2.3 (i), B is an abelian inner ideal of L, and it is easy

to see that KerLB = KerVB ⊕ L−(n−1) ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln. If L is nondegenerate, then so is

the Jordan pair V = (Ln, L−n) and hence KerVLn = 0 by [[18]; 1.4]. Now (ii) follows easily

from (i). �

Remark 3.4. By definition, a properly ascending chain 0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bn of inner

ideals of a Lie algebra L has length n. The length of an inner ideal B is the supremum of

the lengths of chains of inner ideals of L contained in B.

The following elemental characterization of strong primeness for Lie algebras

[[12]; Theorem 1.6] will be used in the proof of our next result: A Lie algebra L (over an

arbitrary ring of scalars) is strongly prime (as defined in 2.2) if and only if [x, [y, L]] = 0

implies x = 0 or y = 0, for every x, y ∈ L.

Proposition 3.5. Let B be an abelian inner ideal of a Lie algebra L, K = KerLB the kernel

of B, and V = (B, L/K) the subquotient of L relative to B.

(i) A Φ-submodule of B is an inner ideal of L if and only if it is an inner ideal

of V.

(ii) If C is an inner ideal of L, then C = (C + K)/K is an inner ideal of V.

(iii) If L is nondegenerate (strongly prime), then V is nondegenerate (strongly

prime).

If L is nondegenerate, then,

(iv) V has nonzero socle if and only if B contains minimal inner ideals. In fact,

SocB = SocL ∩ B, and

(v) B has finite length if and only if V is Artinian. In this case, B ⊂ SocL and

V ∼= (B, I/KerIB), where I is any ideal of L containing B.

(vi) If L is strongly prime and B is nonzero and of finite length, then V is a simple

nondegenerate Artinian Jordan pair. �
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Proof.

(i) is trivial.

(ii) is trivial.

(iii) Suppose that L is strongly prime. If {b, L/K, b ′} = 0 for some b, b ′ ∈ B, then

[[b, L], b ′] = 0 and hence b = 0 or b ′ = 0 by the elemental characterization

of strong prime Lie algebras in Remark 3.4. Suppose now that {a,B, c} =

0 for some a, c ∈ L. i.e., [[a,B], c] ⊂ K. By Lemma 2.1 (iv), we have for any

b ∈ B

0 = [b, b,a, c,B] ⊃ [b, b,a, c, b, b, L] = [[b, b,a], [b, b, c], L],

which, again by the elemental characterization of strong primeness in

Remark 3.4 implies [b, [b,a]] = 0 or [b, [b, c]] = 0, i.e., ā = 0 or c̄ = 0. A sim-

ilar argument applies when L is nondegenerate to yield nondegeneracy

of V.

(iv) By (iii) V is nondegenerate, and by (i) the minimal inner ideals of V which

are contained in B are those minimal inner ideals of L which are con-

tained in B.

(v) By [[18]; Corollary 4.8], B has finite length if and only if V is Artinian. In this

case, B = Soc B ⊂ Soc L, since Artinian nondegenerate Jordan pairs co-

incide with their socles. Let I be an ideal of L containing B. The injection

j : I → L induces the Jordan pair monomorphism (1B, j̄) : (B, I/KerIB) →
(B, L/KerLB), but since Artinian nondegenerate Jordan pairs are von Neu-

mann regular, (1B, j̄) is actually an isomorphism: L/K = {L/K,B, L/K} =

[[L,B], L] = I.

(vi) By (iii) and (v), V is a strongly prime Artinian Jordan pair. Hence, by the

socle structure theorem, see 2.5, V = SocV is a simple Jordan pair. �

3.2 Jordan algebras of a Lie algebra

In the recent paper [10], the first three authors of this article showed how to attach a

Jordan algebra Lx to any Jordan element x of a Lie algebra L (over a ring of scalars

Φ containing 1
6 ). We will show that Lx can be regarded as the x-homotope of the

subquotient of L relative to the abelian inner ideal B = (x) = Φx + [x, x, L]. To do so,

the following facts will be used.
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Remark 3.6.

(i) Let V = (V+,V−) be a Jordan pair and x ∈ V−σ, σ = ±. The Φ-module Vσ

becomes a Jordan algebra with respect to the product a • b :=
1
2{a, x, b},

called the x-homotope of V and denoted by V(x) [[16]; 1.9]. Its U-operator

is Ua = QaQx.

(ii) Let B = (x) be the (abelian) inner ideal generated by a Jordan element x of L,

and put V = (B, L/KerLB). Then V(x) is the Jordan algebra defined on the

Φ-module L/KerLB with product a • b =
1
2 [[a, x], b].

(iii) Actually, the definition of Jordan algebra at a Jordan element given in [10]

is slightly different from that of (ii): kerL x := {z ∈ L : [x, [x, z]] = 0} is

used there instead of KerLB. Nevertheless, both definitions agree in the

nondegenerate case.

Lemma 3.7. Let L be a nondegenerate Lie algebra and let x ∈ L be a Jordan element. Then

KerL[x] = KerL(x) = kerL x. �

Proof. Let z ∈ KerL [x]. By Lemma 2.1 (iii) we have for every a ∈ L that

0 = [[x, x,a], [[x, x,a], z]] = ad2
ad2

xaz = ad2
xad2

aad2
xz

which implies Uāz̄ = 0 for every ā ∈ Lx, the Jordan algebra of L at x. But Lx is

nondegenerate by [[10]; Proposition 2.15], and hence ULx z̄ = 0 implies z̄ = 0, i.e., ad2
xz = 0,

which proves the equality KerL[x] = kerL x.

Let z ∈ KerL x. For any λ ∈ Φ and a ∈ L, we have [λx + [x, x,a], [λx + [x, x,a], z]] =

λ2[x, x, z] + 2λ[[x, x,a], [x, z]] + [[x, x,a], [x, x,a], z] where every summand is zero since

ad3
x = 0 and ad2

xz = 0. Thus, z ∈ KerL(x). The reverse inclusion KerL (x) ⊂ KerL[x] is

trivial. �

4 Some results on 3-graded root systems

In this section we will state and prove some results on 3-graded root systems. The

first result holds for locally finite root systems as studied in [19] and deals with the

coroot system R∨ of R ([[19]; 4.9]), the root lattice Q(R) and the weight lattice P(R) of

R ([[19]; §7]). We will use special elementary configurations (triangles, quadrangles and

diamonds) defined in [[19]; §18]. Following the convention of [19] we will always assume

0 ∈ R.
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Proposition 4.1. Let (R,R1) be a 3-graded root system with coroot system R∨.

(a) The root lattice Q(R∨) of R∨ is isomorphic to the abelian group presented by

generators x̌α, α ∈ R1, and relations

(i) x̌α = x̌β + x̌γ for all triangles (α;β, γ) ⊂ R1, and

(ii) x̌α + x̌γ = x̌β + x̌δ for all quadrangles (α,β, γ, δ) ⊂ R1.

(b) A function ω : R1 → Z extends to a weight ω̃ of R if and only if ω satisfies

(i) ω(α) = ω(β) + ω(γ) for all triangles (α;β, γ) ⊂ R1, and

(ii) ω(α) + ω(γ) = ω(β) + ω(δ) for all quadrangles (α,β, γ, δ) ⊂ R1.

In this case, the extension ω̃ is unique and ω also satisfies

(iii) 2ω(α) + ω(γ) = ω(β) + ω(δ) for all diamonds (α;β, γ, δ) ⊂ R1. �

The proof is essentially an application of [[19]; Proposition 11.12] with P the

parabolic subset (R0 ∪ R1)∨ of R∨, while (b) follows immediately from (a). Details will

be contained in [20].

Definition 4.2. Let (R,R1) be a finite 3-graded root system. Recall that any root α gives

rise to a unique weight α̃ defined by α̃(β) = 〈α,β∨〉 for β ∈ R. We will identify α̃ = α. For

ω ∈ P(R) and for an orthogonal system O ⊂ R1 we define

τ (ω) =
∑

α∈R1
〈ω,α∨〉 and τO(ω) =

∑
α∈O 〈ω,α∨〉.

Proposition 4.3. Let (R,R1) be a finite 3-graded root system. Then there exist a positive

integer n and a group homomorphism ϕ : P(R) → Z such that

(i) ϕ(α) = n for α ∈ R1, and

(ii) |ϕ(ω)| < n for every ω ∈ P(R) satisfying |τO(ω)| ≤ 1 for every orthogonal

system O ⊂ R1. �
If R is irreducible then τ satisfies (i) and (ii) with n the Coxeter number of R.

We will first consider an irreducible R and show that ϕ = τ satisfies (i) and (ii).

The general case will then be dealt with in 4.8. In the irreducible case we will use the

classification of irreducible 3-graded root systems, as given in [[19]; 17.8 and 17.9]. This

will also give us some more precise information about τ (ω). We let h denote the Coxeter

number of R, which can be found in the tables of [[6]; VI].

4.1 Rectangular grading Ap
l , 1 ≤ p ≤ [ l+1

2 ]

Here R = Al so the Coxeter number h = l + 1. Let q = l + 1 − p. Up to isomorphism we can

assume that the 1-part R1 of this 3-grading is given by R1 = {εi − εj : 1 ≤ i ≤ p < j ≤ h}.
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It is then easily seen that τ (β) = h for every β ∈ R1. Moreover, R1 is a disjoint union of

q orthogonal systems Oi of length p, whence |τ (ω)| ≤
∑q

i=1 |τOi(ω)| ≤ q < h for ω as in

Proposition 4.3 (ii).

4.2 Odd quadratic form grading Bqf
l

Here R = Bl, l ≥ 2, so h = 2l. Up to isomorphism, the 1-part of R1 of this 3-grading is

R1 = {ε1} ∪ {ε1 ± εi : 2 ≤ i ≤ l}. Each (ε1; ε1 + εi, ε1 − εi) is a triangle. It then follows from

Proposition 4.1 (b.i) that τ (ω) = l〈ω, ε∨
1 〉 for any ω ∈ P(R). In particular, τ (α) = 2l for

ω = α ∈ R1 and τ (ω) ∈ {0,±l} for any ω ∈ P(R) satisfying Proposition 4.3 (ii).

4.3 Hermitian grading Cher
l

Here R = Cl, l ≥ 3, so h = 2l. Up to isomorphism, the 1-part R1 of this 3-grading is given

by R1 = {εi + εj : 1 ≤ i, j ≤ l}. For i �= j, the family (εi + εj : 2εi, 2εj) is a triangle, whence

(εi + εj)∨ = (2εi)∨ + (2εj)∨. It then follows that

τ (ω) = l

(
l∑

i=1

〈ω, (2εi)∨〉
)

holds for any ω ∈ P(R). In particular τ (β) = 2l for any β ∈ R1, while τ (ω) ∈ {0,±l} for ω

as in Proposition 4.3 (ii).

4.4 Even quadratic form grading Dqf
l

Here R = Dl, l ≥ 4, and h = 2(l − 1). Up to isomorphism R1 = {ε1 ± εi : 1 < i ≤ l}.

Since (ε1 + ε2, ε1 + εi, ε1 − ε2, ε1 − εi) is a quadrangle for 2 < i ≤ l, we get τ (ω) =

(l − 1)
(
〈ω, (ε1 + ε2)∨〉+ 〈ω, (ε1 − ε2)∨〉

)
for every ω ∈ P(R). This easily implies (i) and (ii) of

Proposition 4.3.

4.5 Alternating grading Dalt
l

Here R = Dl, l ≥ 4 and h = 2(l − 1). We abbreviate (ij) = εi + εj. Up to isomorphism

we then have R1 = {(ij) : 1 ≤ i < j ≤ l}. We first consider the case of an even l. Then

O = {(12), (34), . . . (l − 1, l)} is an orthogonal system such that R1 = O ∪
⋃l−2

i=1 Oi where

each Oi is an orthogonal system of two roots with the property that each Oi together
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with two roots of O forms a quadrangle. This implies τ (ω) = (l − 1)
∑

α∈O 〈ω,α∨〉. If

l is odd, we apply the previous considerations to the 3-graded subsystem with 1-part

{(ij) : 1 ≤ i < j ≤ l − 1}, and get that τ (ω) = (l − 2)
( ∑

α∈O 〈ω,α∨〉
)

+
∑l−1

i=1〈ω, (il)∨〉. In both

cases, (i) and (ii) of Proposition 4.3 easily follow.

4.6 Bi-Cayley grading Ebi
6

Here R = E6 and h = 12. By [23] the 1-part of this 3-grading is cog-isomorphic

with the 16 tripotents of a bi-Cayley grid B in a Jordan triple system as defined in

[[22]; III, Section 3.1]. By definition, a cog-isomorphism is a bijection which preserves

the elementary relations (orthogonality, collinearity and governing) in R1 and in B.

In particular, it follows from [[22]; III, Section 3.1] that, letting e±i ∈ B correspond to

α±
i ∈ R1, the 1-part R1 = (ασ

i : σ = ±, 1 ≤ i ≤ 8) is the union of the 1-parts of two Dqf
5 -

gradings, namely (ασ
i : σ = ±, 1 ≤ i ≤ 4) and (α±

i : σ = ±, 5 ≤ i ≤ 8). By 4.4 we therefore

have τ (ω) = 4
(
〈ω, (α+

1 )∨〉 + 〈ω, (α−
1 )∨〉 + 〈ω, (α+

5 )∨〉 + 〈ω, (α−
5 )∨〉

)
for any ω ∈ P(R), which

implies (ii) of Proposition 4.3. That also (i) holds then follows from the Peirce relations

in the bi-Cayley grid B.

4.7 Albert grading EAlb
7

Here R = E7 and h = 18. We will proceed as in 4.6. The 1-part R1 of this 3-grading is cog-

isomorphic to the 27 tripotents of an Albert grid in a Jordan triple system. The structure

of the Albert grid ([[22]; III, Section 3.2]) then shows that R1 contains an orthogonal

system (α1,α2,α3) such that R1 \ {α1,α2,α3} =
⋃12

i=1 Oi, where each Oi = {β+
I ,β−

i } is

an orthogonal system such that (β+

i ,αj,β
−

i ,αk) is a quadrangle for a unique pair j, k ∈
{1, 2, 3}. The Peirce relations in the Albert grid show that τ (ω) = 9

∑3
i=1〈ω,α∨

i 〉 for any

ω ∈ P(R) and that (i) and (ii) of Proposition 4.3 hold.

4.8 Proof of Proposition 4.3

We have seen in 4.1–4.7 that Proposition 4.3 holds for an irreducible root system. Let

R =
⋃s

i=1 R(i) be the decomposition of R into its irreducible components, let n =

lcm(h1, . . . ,hn) where hi is the Coxeter number of the irreducible component R(i) and let

τi be the function of Definition 4.2 for R(i). We claim that

ϕ(ω) =

s∑
i=1

n
hi

τi(ω)
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fulfills (i) and (ii) of Proposition 4.3. Obviously ϕ : P(R) → Z is a group homomorphism.

For β ∈ R1 ∩ R(i) we have ϕ(β) =
n
hi

τi(β) = n. For ω as in (ii) note first that the

number of irreducible components on which ω does not vanish is at most two. Indeed,

if 〈ω,α∨
i 〉 �= 0 for αi, i = 1, 2, 3, belonging to different components, then (α1,α2,α3)

is an orthogonal system. Because |〈ω,α∨
i 〉| = 1 there exists {i, j} ⊂ {1, 2, 3} such that

〈ω,α∨
i 〉 + 〈ω,α∨

j 〉 = ±2, contradiction. The same argument also shows that if ω does not

vanish on two irreducible components then ω has nonnegative values on one component,

say on R(i), and nonpositive values on the second component, say on R(j). We therefore get

ϕ(ω) =
n
hi

τi(ω) +
n
hj

τj(ω) < n
hi

τi(ω) < n
hi

hi = n,

and similarly ϕ(ω) > n
hj

τj(ω) > −n.

5 Lifting of idempotents

From now on we assume that all modules, and hence all Lie algebras and Jordan pairs

are defined over a ring of scalars Φ with µ1Φ ∈ Φ× for µ = 2, 3, 5.

Lemma 5.1. Let S = {−2,−1, 0, 1, 2}, let M be a Φ-module and suppose H, F ∈ EndΦM

satisfy
∏

σ∈S (H − σ) = 0 and [H, F] = −2F, where we abbreviated H − σ = H − σIdM for

σ ∈ S. Then F3 = 0. �

Proof. If σ, τ ∈ S with σ �= τ then 0 < |σ − τ | ≤ 4, whence (σ − τ )1Φ ∈ Φ×. Therefore M

has an eigenspace decomposition M =
⊕

σ∈S Mσ where Mσ = Ker(H − σ) [[4]; Lemma 2.1].

From [H, F] = −2F we get FlMσ ⊂ Mσ−2l for any l ∈ N. We claim

FlM−4+2l = 0 = FlM−3+2l for 1 ≤ l ≤ 3. (5.1)

Indeed, FlM−4+2l ⊂ M−4 and FlM−3+2l ⊂ M−3. Since (S + 4)1Φ = {2, 3, . . . , 6}1Φ ⊂ Φ× and

(S + 3)1Φ = {1, . . . , 5}1Φ ⊂ Φ×, it follows that M−4 = 0 = M−3, proving (5.1). Because

any σ ∈ S is of the form σ = −4 + 2l or σ = −3 + 2l for suitable l ∈ {1, 2, 3}, we get

F3Mσ = F3−lFlMσ = 0 by (5.1), and F3 = 0 follows. �

Proposition 5.2. Let Γ be an abelian group, L =
⊕

γ∈Γ Lγ a Γ-graded Lie algebra. If

0 �= e ∈ Lα, α ∈ Γ , satisfies (ad e)3 = 0 and [[e,u], e] = 2e for some u ∈ L−α, then there

exists v ∈ L−α ∩ Ker ad e such that (e, [e, f ], f ), f = u − v, is an sl2-triple with (ad f )3 = 0.

�
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For Γ = {0} the result is proven in [[28]; Lemma V.8.2] (Φ a field) and in [[7];

Lemma 2.9]. Our proof is an easy adaptation of Seligman’s proof, which — as Seligman

states — “is really a summary of certain results of Jacobson”.

Proof. We put h = [e,u] ∈ L0 and thus have [h, e] = 2e. Let E = ad e ∈ EndΦL and H = ad h.

Since E is homogeneous, Ker E is a Γ-graded submodule: Ker E =
⊕

γ∈Γ (Ker E ∩ Lγ). One

proves as in [[15]; p. 99] that H(Ker E) ⊂ Ker E and that H(H − 1)(H − 2)|Ker E = 0, whence

H(Ker E∩Lγ) ⊂ Ker E∩Lγ and H(H−1)(H−2)|(Ker E∩Lγ) = 0 for all γ ∈ Γ . For 0 ≤ i �= j ≤ 2

we have (i − j)1Φ ∈ Φ×. Therefore H |(Ker E ∩ Lγ) is diagonalizable with eigenvalues

0, 1Φ and 2 · 1Φ. It then follows that H + 2|(Ker E ∩ Lγ) is invertible for all γ ∈ Γ . Since

[e, [h,u]] = −2[e,u] we have [h,u] + 2u ∈ Ker E ∩ L−α. Hence there exists v ∈ L−α ∩ Ker E

such that [h,u] + 2u = [h, v] + 2v. It follows that (e,h, f ), f = u − v, is an sl2-triple. Then
∏5

j=1(H − 3 + j) = 0 by [14]; Lemma 1]. Finally Lemma 5.1 shows (ad f )3 = 0. �

5.1 Compatible Families of Idempotents

We say that (e+, e−) ∈ L × L is an idempotent in L if [[eσ, e−σ], eσ] = 2eσ for σ = ±, and

[e+, e+, e+, L] = 0. For an idempotent e = (e+, e−), we always let he = [e+, e−]. It is known

([[14]; Lemma 1]) that adhe is diagonalizable with eigenvalues 0, ±1,±2, so by Lemma 5.1

also [e−, e−, e−, L] = 0. Thus (e+,he, e−) is an sl2-triple with (ad eσ)3 = 0, and

L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, where Li = Li(he) = {x ∈ L : [he, x] = ix}. (5.2)

Following the concepts used in the theory of Jordan pairs, we define the Peirce spaces of

an idempotent e = (e+, e−) ∈ L = L × L by

Li = Li(he) = (Li, L−i), for i ∈ {0,±1,±2}

and call (5.2) the Peirce decomposition of e. We note that it is a 3- or 5-grading with

e ∈ L2(he).

A family E = (eα)α∈A of idempotents in L is called compatible if [he,hf ] = 0 for

all e, f ∈ E, and Peirce-compatible if every e ∈ E lies in a Peirce space of every f ∈ E. A

Peirce-compatible family is easily seen to be compatible.

Any family E = (eα)α∈A of idempotents gives rise to joint Peirce spaces

Lω = Lω(E) =
⋂

α∈A Lω(α)(hα) = {x ∈ L : [hα, x] = ω(α)x for all α ∈ A},
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where ω = (ω(α))α∈A ∈ {0,±1,±2}A, and hα = [e+
α , e

−
α ]. For simplicity we will just write

ω ∈ ZA. A compatible family E is called toral if

L =
⊕

ω∈ZA Lω. (5.3)

Since |ω(α)| ≤ 2 it follows that this decomposition is a ZA-grading of L. It is easily seen

that every finite compatible family is toral.

If L =
⊕

γ∈Γ Lγ is a Γ-graded Lie algebra, an idempotent e = (e+, e−) will be

called homogeneous if e+ ∈ Lγ and e− ∈ L−γ for some γ ∈ Γ . Since then he ∈ L0 the

Peirce decomposition (5.2) of e is compatible with the given Γ-grading. More generally,

the decomposition (5.3) of a toral family E of homogeneous idempotents of L is a Z
A-

grading which is compatible with the given Γ-grading. We will also use the analogous

concepts for a Γ-graded Jordan pair V. For example, if Vσ =
⊕

γ∈Γ Vσ
γ an idempotent

e = (e+, e−) of V is homogeneous if e ∈ V+
γ and e− ∈ V−

−γ for some γ ∈ Γ .

Lemma 5.3. Let B be an abelian inner ideal of L, and let f = (f +, f −) be an idempotent in

L with f + ∈ B, thus L =
⊕2

i=−2 Li(hf ). Then

(a) [f +, f +, f −, f −, x2] = 4x2 for any x2 ∈ L2(hf ), and

(b) KerL B ∩ L−2(hf ) = 0. �

Proof.

(a) From the Jacobi identity we get [f +, f +, f −, f −, x2] = [f +,hf , f −, x2] +

[f +, f −, f +, f −, x2] = 0 + [f +, f −,hf , x2] = 2[f +, f −, x2] = 4x2, since Li(hf )

is the i-eigenspace of ad he.

(b) Let y ∈ KerL B ∩ L−2(hf ). Since L−2(hf ) = [f −, f −, L2(f )], we can write y =

[f −, f −, x2] for some x2 ∈ L2(f ). Then 0 = [f +, f +, y] = [f +, f +, f −, f −, x2] =

4x2 implies x2 = 0, hence y = 0. �

Proposition 5.4. Let L =
⊕

γ∈Γ Lγ be a Γ-graded Lie algebra and let B be a Γ-graded

abelian inner ideal of L. Suppose further that E = (eα)α∈A is a toral family of homoge-

neous idempotents such that all e+
α ∈ B. We thus have a ZA-grading L =

⊕
ω Lω as defined

in (5.3) which is compatible with the given Γ-grading.

(a) Put Bω = B ∩ Lω for w ∈ ZA. Then B = ⊕ωBω, where each Bω is a Γ-graded

submodule. Moreover, Bω �= 0 only when ω(α) ≥ 0 for all α ∈ A, and if

ω(α) = 2 for some α ∈ A then Bω = Lω.

(b) Let K = KerL B and put Kω = K ∩ Lω for w ∈ Z
A. Then K = ⊕ωKω, where each

Kω is a Γ-graded submodule and Kω = 0 if ω(α) = −2 for some α ∈ A.
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(c) Let V = (B, L/K), and put gα = eα = (e+
α , e−

α) ∈ V. Then E = G = (gα)α∈A is a

compatible family of homogeneous idempotents in V whose joint Peirce

spaces are

Vω(G) = (Bω, L−ω/K−ω).

Hence V = ⊕ω(Bω, L−ω/K−ω).
(d) Let f = (f +, f −) ∈ Vγ

ω(G) =
(
(V+

ω )γ , (V−
ω )−γ

)
be a homogeneous idempotent of

V. Then there exists a homogeneous idempotent e ∈ (Lγ
ω, L

−γ
−ω) such that

(e+, e−) = f . The extended family E∪{e} is again toral. Moreover, if E and

G ∪ {f } are Peirce-compatible families, then so is E ∪ {e}. �

Proof.

(a) We have [hα,B] = [[e+
α , e

−
α ],B] = [e+

α , [e−
α ,B]] ⊂ B since B is an abelian inner

ideal of L. This implies B = ⊕ωBω and that each Bω is homogeneous.

If ω(α) < 0 for some α ∈ A, for b ∈ Bω we have ω(α)b = [hα, b] =

[e+
α , [e

−
α , b]] = 0, since [e−

α , b] ∈ L(hα)ω(α)−2 = 0 because |ω(α) − 2| ≥ 3.

If ω(α) = 2, then Lω ⊂ L2(hα) = [e+
α , e

+
α , L] ⊂ B.

(b) follows from [K, L,B] ⊂ K, using (3.1) and Lemma 5.3 (b).

(c) It is immediate from the definition of the Jordan triple product of V that E

is a family of homogeneous idempotents. Indeed, we have {g+
α , g

−
α , b} =

[[e+
α , e

−
α ], b] = [hα, b] and, {g+

α , g
−
α , x} = −[hα, x] for b ∈ B and x ∈ L. These

formulas also show that the left multiplication operators D(eσ
α, e

−σ
α ) in V

are given by D(g+
α , g

−
α) = ad hα on B = V+, and D(g+

α , g
−
α) = −can◦ad hα on

V− for can : L → L/K the canonical map. It follows that G is a compatible

family of idempotents of V. For ω ∈ Z
A and b ∈ B we have b ∈ Bω ⇔

[hα, b] = ω(α)b for all α ∈ A ⇔ b ∈ V+

ω(α)(gα) for all α ∈ A. Also for

x =
∑

ν∈ZA xν , xν ∈ Lν , we get {g−
α , g

+
α , x} = −

∑
ν ν(α)xν . From this it

easily follows that V−
ω (G) = L−ω/K−ω.

(d) Put e+ = f +. We have (ad e+)3L = [e+, (ad e+)2L] ⊂ [e+,B] = 0 since B is

an abelian inner ideal. Let u ∈ L−γ
−ω(E) such that u = f − ∈ Vω(G)−.

Then [[e+,u], e+] = [[e+, f −], e+] = 2e+. By Proposition 5.2 there exists

v ∈ L−γ
−ω(E) ∩ Ker ad e+ such that (e+, [e+, e−], e−), e− = u − v, is an sl2-

triple with (ad e−)3 = 0, i.e., e = (e+, e−) is a homogeneous idempotent

of L. Since he = [e+, e−] ∈ L0
0, the extended family is again toral. Also,
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[[e−,u], e+] ∈ KerL B, so

2f −
= [[f −, f +], f −] = [[u, e+],u] = [[e−, e+],u] = [[e−,u], e+] + [e−, [e+,u]]

= [[e−, e+], e−] = −[he, e−] = 2e−.

Hence f − = e−, and e is indeed a lift of f .

By construction e ∈ Lγ
ω(E). For the second part of (d) it therefore remains to prove

that (e+
α , e

−
α), α ∈ A, lies in the Peirce space of e, i.e., [h, eσ

α] = σµeσ
α for h = [e+, e−],

σ = ±, and some µ ∈ {0,±1,±2}. But we know that there exists µ ∈ {0,±1,±2} such

that {f σ, f −σ, gσ
α} = µgσ

α, so in particular [h, e+
α ] = [[e+, e−], e+

α ] = [[f +, f −], g+
α ] = µg+

α ,

while [h, e−
α ] = −[[e−, e+], e−

α ] = −{f −, f +, g−
α} = −µe−

α , so [h, e−
α ] + µe−

α ∈ Kω. Since

E is Peirce-compatible, e−
α ∈ Lω for some ω ∈ ZA, whence Kω = 0 by (b). Therefore

[h, e−
α ] = −µe−

α . �

5.2 Weight-graded Lie algebras

Let R be a root system. A P(R)-graded Lie algebra L =
⊕

ω∈P(R) Lω is called an R-weight-

graded Lie algebra [27] if it has the following properties:

(i) For every α ∈ R× = R \ {0} there exists a non-zero pair (eα, fα) ∈ Lα × L−α

such that hα = [eα, fα] acts on Lω by [hα, xω] = 〈ω,α∨〉xω where xω ∈ Lω.

(ii) L0 =
∑

0 �=ω∈P(R) [Lω, L−ω].

(iii) For all σ, τ ∈ supp L = {ω ∈ P(R) : Lω �= 0} there exists α ∈ R such that

〈σ − τ ,α∨〉.1Φ ∈ Φ×.

In this case, we will call S = (eα, fα : α ∈ R×) a splitting family and simply write

S = (eα : α ∈ R×) in case S is normalized in the sense that fα = e−α. An R-graded Lie

algebra as defined in [26] is an R-weight-graded Lie algebra with supp L = R a reduced

root system.

We note that (iii) is of course automatic if Φ is a field of characteristic 0. Also, if L

is R-graded, (iii) just means 2, 3 ∈ Φ× and hence is always fulfilled under our assumption

on Φ. For R a finite root system and Φ a field, the notion of an R-graded Lie algebra has

been introduced and studied by Berman-Moody in case R is simply-laced and �= A1 [2],

and by Benkart-Zelmanov in the remaining cases [5].

If L only satisfies (i) and (iii), it is easily checked that then

Lc =

∑
0 �=ω

[Lω, L−ω]

 ⊕

⊕
0 �=ω

Lω

 (5.4)

is an ideal of L, called the core, which is R-weight-graded.
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The next theorem uses the concept of standard grids in Jordan pairs for which

the reader is referred to [[23]; 3.5] or [[25]; 1.7]. We note that every covering grid can be

changed to a covering standard grid with the same Peirce spaces and the same associated

3-graded root system. We also recall our basic assumption for this section: All algebraic

structures are defined over Φ in which i · 1Φ, i = 2, 3, 5, is invertible.

Theorem 5.5. Let B be an abelian inner ideal in a Lie algebra L, and suppose that the sub-

quotient V = (B, L/KerL B) is covered by a standard grid G with associated 3-graded root

system (R,R1), hence G = (gα)α∈R1 for idempotents gα = (g+
α , g

−
α) in V. Let E = (eα)α∈R1 be

a toral family of Peirce-compatible idempotents in L such that eα = (e+
α , e−

α ) = gα for all

α ∈ R1. We put hα = [e+
α , e

−
α ] and denote by Lω, ω ∈ ZR1 , the joint eigenspaces of (hα)α∈R1 :

Lω = {x ∈ L : [hα, x] = ω(α)x for all α ∈ R1}. (5.5)

We let supp L = {ω : Lω �= 0}.

(a) Every ω ∈ supp L has a unique extension to a weight of R, also denoted ω,

such that ω(α) = 〈ω,α∨〉 for all α ∈ R1. Moreover, putting Lω = 0 for

ω ∈ P(R) \ supp L, the decomposition L =
⊕

ω∈P(R) Lω is a grading by the

abelian group P(R).

(b) Every ω ∈ supp L has the property that
∑

α∈O 〈ω,α∨〉 ∈ {0,±1 ± 2} for every

finite orthogonal system O ⊂ R1. Moreover, for σ = ± we have ω ∈ Rσ1

if and only if there exists a finite orthogonal system O ⊂ R1 such that∑
α∈O 〈ω,α∨〉 = σ2.

(c) B =
⊕

α∈R1
Lω and KerL B =

⊕
ω �∈R−1

Lω.

(d) For 0 �= µ ∈ R0, written as µ = α − β with α,β ∈ R1, the element eµ = [e+
α , e

−

β ]

is well-defined up to sign. Moreover, L satisfies the conditions (i) and

(iii) of 5.2 with respect to the family S = (eα, : α ∈ R×) where eα = e+
α ,

e−α = e−
α for α ∈ R1 and eµ as defined above for some chosen decomposi-

tion 0 �= µ = α − β ∈ R0. Hence the core

Lc =
( ∑

0 �=ω [Lω, L−ω]
)
⊕

( ⊕
0 �=ω Lω

)
of L, cf. (5.4), is an R-weight-graded ideal of L.

(e) Let h =
∑

α∈R1
Φhα ⊂ L0. Then h is an abelian subalgebra of L, and

g =
( ⊕

α∈R1
Φe+

α

)
⊕

(
H ⊕

∑
0 �=µ∈R0

Φeµ

)
⊕

( ⊕
α∈R−1

Φe−
α

)
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is a subalgebra of L which is R-graded and hence in particular 3-graded.

If Φ is a field of characteristic 0, then g is the Tits-Kantor-Koecher algebra

of the Jordan pair spanned by G. In particular, if Φ is a field of character-

istic 0 and R is finite then g is a finite-dimensional split semisimple Lie

algebra with splitting Cartan subalgebra h. �

The proof of the theorem will be given in 5.3. In the Lemmas 5.6–5.9 we will

establish some additional results on the structure of L which are of independent interest.

Throughout the assumptions of Theorem 5.5 are assumed to hold, except that we do not

assume (nor use) that G covers V.

Lemma 5.6. Let α,β, γ ∈ R1. Then for σ = ± we have [ [eσ
α, e

−σ
α ], eσ

β] = 〈β,α∨〉eσ
β =

[ [eσ
β , e

−σ
α ], eσ

α], while for α �= β �= γ and α − β + γ = δ ∈ R1 there exists µ ∈ {±1, 2}
such that [ [eσ

α, e
−σ
β ], eσ

γ ] = µeσ
δ = [ [eσ

γ , e
−σ
β ], eσ

α] for σ = ±, where µ is determined by the

corresponding equation for G, i.e., {gσ
α, g−σ

β , gσ
δ } = µgσ

δ . �

Proof. By [[23]; 3.5] all equations hold for gσ in place of eσ. Since [[e+
α , e

−

β ], e+
γ ] =

{g+
α , g

−

β , g
+
γ }, the claim holds for σ = +. For σ = − we get [ [e−

α , e
+

β ], e−
γ ] = {g−

α , g
+

β , g
+
γ } = νg−

δ ,

where ν = 〈β,α∨〉 for the first formula and ν = µ for the second. By grading properties,

[[e−
α , e

+

β ], e−
γ ], e−

δ ∈ Lω for a suitable ω, where gδ ∈ V−ω = (L−ω, Lω) by Proposition 5.4 (c).

Since ω(δ) = −2, we have Kδ = 0 by Proposition 5.4 (b), whence [[e−
α , e

+

β ], e−
γ ] = νe−

δ . We

also get [[e−
α , e

+

β ], e−
γ ] − [[e−

γ , e
+

β ], e−
α ] ∈ Kδ = 0. �

Lemma 5.7. For α,β ∈ R1 with α⊥β we have [e+
α , e

−

β ] = 0 and [ [eσ
α, e

−σ
β ], eσ

γ ] = [[eσ
γ , e

−σ
β ], eσ

α]

= 0 for all γ ∈ R1. �

Proof. It is immediate from the definitions that [hβ , e+
α ] = [[e+

β , e
−

β ], e+
α ] = 〈α,β∨〉e+

α = 0

and [hβ , e−

β ] = −2e−

β . Hence [hβ , [e+
α , e

−

β ]] = −2[e+
α , e

−

β ] ∈ L−2(hβ). Thus [e+
α , e

−

β ] ∈ Lω where

ω(β) = −2. But [e+
α , e

−

β ] ∈ [B, L] ⊂ K by Lemma 3.2 (c). Since Kω = 0 by Proposition 5.4 (b),

we have [e+
α , e

−

β ] = 0. The second equation is clear for σ = +, since it holds in V, cf.

Lemma 5.6. For σ = −, we have [ [e−
α , e

+

β ], e−
γ ] = 0 since [e−

α , e
+

β ] = 0 by what we just proved.

Moreover, [ [e−
γ , e

+

β ], e−
α ] ∈ L

−(〈γ,α∨〉+2)(hα) by Theorem 5.5 (a), whence [ [e−
γ , e

+

β ], e−
α ] = 0

when 〈γ,α∨〉 > 0, while [[e−
γ , e

+

β ], e−
α ] ∈ L−2(hα) ∩ K for γ⊥α, which again implies

[[e−
γ , e

+

β ], e−
α ] = 0. �

Lemma 5.8.

(a) Let (α;β, γ) ⊂ R1 be a triangle. Then hα = hβ + hγ and [e+
α , e

−

β ] = [e+
γ , e

−
α ].
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(b) Let (α,β, γ, δ) ⊂ R1 be a quadrangle. Then hα + hγ = hβ + hδ. More-

over, [e+

β , e
−
α ] = ε[e+

γ , e
−

δ ] where the sign ε ∈ {±} is determined from

{gσ
α, g

−σ
β , gσ

γ} = εgσ
δ .

(c) Let (α;β, γ, δ) ⊂ R1 be a diamond. Then 2hα + hγ = hβ + hδ and [e+

β , e
−
α ] =

[e+
γ , e

−

δ ]. �

Proof. In Lemma 5.6 and Lemma 5.7 we have established all necessary equations so that

the proof of [[23]; Lemma 2.2] works in our more general situation. Details will be left to

the reader. �

Lemma 5.9. Let O ⊂ R1 be a finite orthogonal system and define eσ
O =

∑
α∈O eσ

α. Then

eO = (e+

O, e
−

O) is an idempotent of L with [e+

O, e
−

O] =
∑

α∈O hα and
∑

α∈O 〈ω,α∨〉 ∈
{0,±1,±2} for any ω ∈ supp L. �

Proof. It is immediate from Lemma 5.6 and Lemma 5.7 that hO = [e+

O, e
−

O] =
∑

α∈O[e+
α , e

−
α ]

and that [hO, eσ
O] = σ2eσ

O. Since (ad e+)3 = 0 it then follows that (e+

O, e
−

O) is an idempotent.

For 0 �= x ∈ Lω we have [hO, x] =
∑

α∈O[hα, x] = (
∑

α∈O〈ω,α∨〉) x. Now, if |
∑

α∈O〈ω,α∨〉| ≥
3 there exists a subsystem O ′ ⊂ O of cardinality 2 or 3 such that

∑
α∈O ′ 〈ω,α∨〉 = {±3,±4}.

Hence [h ′, x] = µx for µ ∈ {±3,±4}. However, since f = (
∑

α∈O ′ e+
α ,

∑
α∈O ′ e−

α) is an

idempotent of L with [f +, f −] = h ′, the eigenvalues λi of adh ′ lie in {0,±1,±2}. Since for

µ ∈ {±3,±4} we have λi −µ ∈ {±1,±2,±3,±4,±5,±6} ·1Φ ⊂ Φ×, the equation [h ′, x] = µx

implies x = 0, contradiction. �

5.3 Proof of Theorem 5.5

(a) For the proof of Theorem 6.3 below we point out that we will not use in the proof of

(a) that G covers V.

By Proposition 4.1 (b) it suffices to check that for ω ∈ supp(L) we have:

(i) ω(α) = ω(β) + ω(γ) for any triangle (α;β, γ) ⊂ R1, and

(ii) ω(α) + ω(γ) = ω(β) + ω(δ) for any quadrangle (α,β, γ, δ) ⊂ R1.

Let 0 �= x ∈ Lω, and let (α; β, γ) ⊂ R1 be a triangle. Thus, by Lemma 5.8 (a),

ω(α)x = [hα, x] = [hβ +hγ , x] = (ω(β)+ω(δ))x, i.e., (ω(α)−ω(β)−ω(δ))x = 0. Since |ω(µ)| ≤ 2

for any µ ∈ R1, we have that |ω(α) − ω(β) − ω(δ)| ≤ 6. Hence, if ω(α) − ω(β) − ω(δ) �= 0,

then ω(α) − ω(β) − ω(δ) is invertible in Φ, so x = 0 follows. Thus (i) holds. Similarly,

if (α,β, γ, δ) ⊂ R1 is a quadrangle, we obtain from Lemma 5.8 (b) that (ω(α) + ω(γ) −

ω(β) − ω(δ))x = 0. We apply Lemma 5.9 to the orthogonal systems (α, γ) and (β, δ) and

we get |ω(α) + ω(γ) − (ω(β) + ω(δ))| ≤ |ω(α) + ω(γ)| + |ω(β) + ω(δ)| ≤ 2 + 2 = 4, hence if
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ω(α) + ω(γ) − ω(β) − ω(δ) �= 0, then ω(α) + ω(γ) − ω(β) − ω(δ) is invertible in Φ and x = 0

follows. Because Lω �= 0 we obtain ω(α) + ω(γ) − ω(β) − ω(δ) = 0, i.e., (ii). Thus ω ∈ supp L

uniquely extends to a weight, also denoted by ω. That L =
⊕

ω∈P(R) Lω is a P(R)-grading

is now immediate from (5.5).

(b) If ω(α) = 2 for some α ∈ R1, then Lω ⊂ L2(hα) ⊂ B by Proposition 5.4 (a), in

particular
⊕

α∈R1
Lα ⊂ B. Conversely, if Bω �= 0 then, by Proposition 5.4 (c), Bω = V+

ω (G)

is a Peirce space of V with respect to G. Since G covers V, we get ω = α for some α ∈ R1.

Thus B =
⊕

α∈R1
Lα.

We know from Proposition 5.4 (b) that K =
⊕

ω Kω where Kω = K ∩Lω, and Kω = 0

if ω(α) = −2 for some α ∈ R1, whence K =
⊕

ω/∈R−1
Kω ⊂

⊕
ω �∈R1

Lω. Conversely, by

Proposition 5.4 (c) any Lω/Kω ⊂ V− is a Peirce space of G. Since the Peirce spaces of G

in V− are V−
α , α ∈ R1, we have Lω/Kω = 0 if ω /∈ R−1, i.e., Lω = Kω for those ω.

(c) The first part of (b) was proven in Lemma 5.9. For the second part, the

condition is obviously necessary: If ω = α ∈ Rσ1, σ = ±, then σα is an orthogonal

system in R1 with 〈ω, (σα)∨〉 = σ〈α,α∨〉 = 2σ. Conversely, if O ⊂ R1 is an orthogonal

system with
∑

α∈O〈ω,α∨〉 = 2σ, let eO = (e+

O, e
−

O) be the idempotent of Lemma 5.9, and

put hO = [e+

O, e
−

O]. If σ = + then Lω ⊂ L2(hO) = [[e+

O, e
+

O], L] ⊂ B, so Lω ⊂ V+ is a Peirce

space with respect to G and therefore of the form Lω = Lβ for some β ∈ R1. If σ = − then

Lω ⊂ L−2(hO). Since e+

O ∈ B, Lemma 5.3 (b) shows Kω = 0, whence Lω ⊂ V− is a Peirce

space with respect to G, and therefore of the form Lβ for some β ∈ R−1.

(d) That eµ, 0 �= µ ∈ R0, is well defined can be proven in the same way as [[25];

Lemma 2.4] by using Lemma 5.8 and [[19]; Prop. 18.9] in place of the results quoted in the

proof of [[25]; Lemma 2.4].

Condition (i) of 5.2 for α ∈ R1 follows from (5.5) since [eα, fα] = hα as defined

in the theorem. It then also holds for α ∈ R−1. For 0 �= µ = α − β ∈ R0 we have

[eµ, e−µ] = [[e+
αe−

β ], [e+

β e−
α ]] = [[[e+

αe−

β ]e+

β ], e−
α ] − [e+

β , [[e
−

β e+
α ]e−

α ]] = 〈α,β∨〉hα − 〈β,α∨〉hβ by

Lemma 5.6. Since µ∨ = 〈α,β∨〉α∨ − 〈β,α∨〉β∨ by [[19]; A.4], condition (i) of 5.2 also holds

for µ ∈ R0. Condition (iii) of 5.2 holds because of (b) and our assumption on Φ. As already

mentioned in 5.2, the core of L is then R-weight-graded.

(e) h is abelian by compatibility of E. To check that g is a subalgebra of L, we put

gε = g ∩ Lε and thus have g =
⊕

ε∈R gε with

gε =


h for ε = 0,

Φeε for 0 �= ε ∈ R0,

Φe±α for ± α ∈ R±1.
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Clearly [h, g] ⊂ g. In the following we will consider the products [gε, gν ] for 0 �= ε, ν ∈ R

and distinguish the cases (1) ε, ν ∈ R1, (2) ε, ν ∈ R−1, (3) ε ∈ R1, ν ∈ R−1, (4) 0 �= ε ∈ R0,

ν ∈ R1, (5) 0 �= ε ∈ R0, ν ∈ R−1 and (6) 0 �= ε, ν ∈ R0

(1) Let ε = α ∈ R1 and ν = β ∈ R1: We have [e+
α , e

+

β ] = 0 since B is abelian.

(2) Let ε = −α ∈ R−1 and ν = −β ∈ R1: If α �⊥ β then [e−
α , e

−

β ] ∈ L−α−β = 0 because

of 〈α + β,α∨〉 ≥ 3 and (c). If α ⊥ β the assumption L−α−β �= 0 together

with −〈α + β,α∨〉 = −2 implies the contradiction α + β ∈ R1, whence

again [e−
α , e

−

β ] = 0.

(3) Let ε = α ∈ R1 and ν = −β ∈ R−1: If α = β then [e+
α , e

−

β ] = hα ∈ h. If α �= β but

α �⊥ β then 0 �= µ = α−β ∈ R0 and [e+
α , e

−

β ] = ±eµ ∈ g. Finally, if α ⊥ β then

[e+
α , e

−

β ] = 0 by Lemma 5.7.

(4) Let 0 �= ε ∈ R0 and ν = γ ∈ R1: We can write ε in the form ε = α−β for suitable

α,β ∈ R1, α �⊥ β such that [eµ, e+
γ ] = [[e+

α , e
−

β ], e+
γ ] = {g+

α , g
−

β , g
+
γ }. By [[23];

3.5] this element is zero if α − β + γ = δ �∈ R1, and lies in Φe+

δ if δ ∈ R1, cf.

Lemma 5.6.

(5) Let 0 �= ε ∈ R0 and ν = −γ ∈ R1: As in case (4) we let µ = α − β so that

eµ = [e+
α , e

−
µ ]. Since then [eµ, e−

γ ] = −[[e−

β , e
+
α ], e−

γ ] we are again done by

Lemma 5.6 in case ω = β − α + γ ∈ R1. Let us therefore assume ω �∈ R1. We

claim than then [[e−

β , e
+
α ], e−

γ ] = 0. Because {g−

β , g
+
α , g

−
γ } = 0 we get at least

[[e−

β , e
+
α ], e−

γ ] ∈ K−ω. We can of course assume K−ω �= 0. By Lemma 5.8 and

Proposition 5.4 (c) we then have 〈ω, δ∨〉 ≤ 1 for all δ ∈ R1, in particular

for δ = β and δ = γ we get 1 + 〈γ,β∨〉 ≤ 〈λ,β∨〉 and 1 + 〈β, γ∨〉 ≤ 〈α, γ∨〉.
By Lemma 5.7 we can also assume β �⊥ α �⊥ γ. The inequalities above

together with 〈R1,R∨
1 〉 ≤ 2 then imply β � α � γ � β. But then (α;β,ω, γ) is

a diamond by [[19]; 18.4] with ω ∈ R1. This contradiction proves [eµ, eν ] =

0 in this case.

(6) Finally, let 0 �= ε, ν ∈ R0: We write again ε as in (4) and can assume that

ν = γ − δ for suitable γ, δ ∈ R1. Then [eµ, eν ] = [eµ, [e+
γ , e

−

δ ]] = [[eµ, e+
γ ], e−

δ ]+

[e+
γ , [eµ, e−

δ ]] ∈ g by what we have already proven. This finishes the proof

that g is a subalgebra.

That g is R-graded is now immediate from (d) and the definition of

an R-graded algebra. Since R is a 3-graded root system, g is a 3-graded

Lie algebra. The last statements then follow from [[25]; Theorem 3.3 and

Theorem 3.4].
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6 Consequences and Examples

In this section we will draw some consequences of Theorem 5.5. As in the previous

section we assume that all Lie algebras and Jordan pairs are defined over a ring of

scalars Φ with µ1Φ ∈ Φ× for µ = 2, 3, 5.

Following [11] we will say that an abelian inner ideal B of a Lie algebra L is

complemented by an abelian inner ideal if there exists an abelian inner ideal C of L such

that L = B ⊕ KerL C = C ⊕ KerL B.

Theorem 6.1. Let L be a Γ-graded Lie algebra, and let B be a graded abelian inner ideal

such that the subquotient V = (B, L/KerL B) is covered by a finite grid G of homogeneous

idempotents. Let R be the finite 3-graded root system associated to G.

Then the assumptions of Theorem 5.5 are fulfilled. In particular, the P(R)-

grading L =
⊕

ω∈P(R) Lω of L is compatible with the given Γ-grading of L. Moreover:

(a) L has a finite Z-grading L = L−n ⊕· · ·⊕L0 ⊕· · ·⊕Ln which is compatible with

the Γ-grading of L and satisfies

Ln = B, KerL B = L−n+1 ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln. (6.1)

If G is a connected grid, then n in (6.1) can be taken as the Coxeter number

of R.

(b) C = L−n is also a graded abelian inner ideal of L with KerL C = L−n ⊕ · · · ⊕
L0 ⊕ · · · Ln−1. In particular, B is complemented by C. �

Proof. If V is covered by a finite grid of homogeneous idempotents, it follows from

[[23]; Theorem 3.7] that V is also covered by a finite standard grid of homogeneous

idempotents, say G ⊂ V. By repeated application of Proposition 5.4 (d) we can construct

a finite Peirce-compatible family E of homogeneous idempotents of L such that the

assumptions of Theorem 5.5 are fulfilled. In particular, L =
⊕

ω∈P(R) Lω is graded by P(R).

Since all hα, α ∈ R1, lie in L0
0 this P(R)-grading is compatible with the given Γ-grading.

(a) Let ϕ : P(R) → Z be the homomorphism of Proposition 4.3. We regrade L via

ϕ, i.e., we define Li =
⊕

ϕ(ω)=i Lω for i ∈ Z. The remaining statements

of (a) then follow from Theorem 5.5 (c) and Proposition 4.3, keeping in

mind for the last part that G is connected if and only if R is irreducible

[[23]; Theorem 3.4].

(b) That also C is an abelian inner ideal is obvious, cf. Lemma 2.3. We have L−n =⊕
ω∈R−1

Lω, and hence C also fulfills the assumptions of Theorem 5.5 with
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V replaced by Vop and +/− exchanged in G and E. Then Theorem 5.5 (c)

shows that KerL C is as claimed in the theorem. It then follows that L =

B ⊕ KerL C = C ⊕ KerL B, i.e., B is complemented by C. �

Corollary 6.2. Let L be nondegenerate. Then every nonzero abelian inner ideal B of finite

length of L is complemented by an abelian inner ideal. In fact, there exists a finite Z-

grading L = L−n ⊕ · · · ⊕ Ln such that B = Ln. �

Proof. If L is nondegenerate and B is an abelian inner ideal of finite length, the sub-

quotient V = (B, L/KerL B) is nondegenerate and Artinian by Proposition 3.5 (iii)(v). By

[[18]; Theorem 5.2], V is covered by a finite grid, hence there exists a finite Z-grading

L = L−n ⊕ · · · ⊕ Ln such that B = Ln and B is complemented by the abelian inner ideal

L−n, see Theorem 6.1. �

Theorem 6.3. Let E be a grid in a Jordan pair V with associated 3-graded root system

(R,R1). We enumerate E = {eα : α ∈ R1}. For ω ∈ Z
R1 we define Vω(E) =

(
V+

ω (E),V−
ω (E)

)
by

V+
ω (E) =

⋂
α∈R1

V+

ω(α)(gα) and V−
ω (E) =

⋂
α∈R1

V−

−ω(α)(gα). (6.2)

(a) Every ω ∈ supp V = {ω ∈ ZR1 : Vω(E) �= 0} has a unique extension to a weight

of R, also denoted ω, such that ω(α) = 〈ω,α∨〉 holds for all α ∈ R1.

(b) Assume V =
⊕

ω Vω(E),which always holds if E is finite. Then, putting Vω = 0

for ω ∈ P(R) \ supp V, the decomposition V =
⊕

ω∈P(R) Vω(E) is a P(R)-

grading of V.

(c) Suppose E is finite. Then there exists a finite Z-grading of V, say V =⊕n
i=−n Vn, satisfying

V+
=

⊕n
i=0 V+

i , V− =
⊕0

i=−n V−

i , and eσ
α ∈ Vσ

σn for all α ∈ R1. (6.3)

If E is connected, n can be taken as the Coxeter number of R. �

Proof. (a) and (b) can be proven in the same way as the proof of Theorem 5.5 (a) in 5.3,

i.e., one verifies the conditions (i) and (ii) of Proposition 4.1 (b), see [20] for details. As in

the proof of 6.1, the Z-grading in (c) is then constructed from the P(R)-grading using the

homomorphism ϕ : P(R) → Z of Proposition 4.3. The properties mentioned in (6.3) are

immediate from the definition (6.2). �

Corollary 6.4. Let V be a Jordan pair, and let B ⊂ V+ be an inner ideal of V whose

subquotient is covered by a finite grid G.
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Then G lifts to a finite grid E in V such that the finite Z-grading of V constructed

in Theorem 6.3 satisfies B = V+
n . Moreover, C = V−

−n is an inner ideal of V which

complements B in the sense of [18]. �

Proof. Let L be the Tits-Kantor-Koecher algebra of V. We recall that L = L1 ⊕ L0 ⊕ L−1 is

a 3-graded Lie algebra with L±1 = V±. We will view V as a Z-graded Jordan pair with

respect to the grading induced from L, i.e., V1 = (V+, 0) and V−1 = (0,V−).

By Proposition 3.3 every inner ideal of V contained in V+ is an abelian inner

ideal of L with KerL B = V+ ⊕ L0 ⊕ KerVB, whence B is a graded inner ideal of the 3-

graded Lie algebra L whose subquotient S = (B, L/KerL B) ∼= (B,V−/KerVB) is covered

by a finite grid of (obviously) homogeneous idempotents. By repeated application of

Proposition 5.4, the grid G lifts to a finite Peirce-compatible family E of idempotents

of L which are homogeneous with respect to the 3-grading of L, whence eσ ∈ Vσ for

σ = ± and e = (e+, e−) ∈ E. By Lemma 5.6, E is a grid in V. We can then apply

Theorem 6.3 and in particular get B =
⊕

α∈R1
V+

α (E) = V+
n , V−

−n =
⊕

α∈R1
V−

−α(E) and

KerVB =
⊕

ω �∈R−1
V−

ω (E) = V−
−n+1 ⊕ · · · ⊕ V−

0 . It is obvious that C = V−
−n is an inner ideal of

V. Applying what we just proved to C and Vop shows KerVC = V+

0 ⊕ · · ·V+
n−1. �

6.1 Abelian Inner Ideals in Simple Finite-Dimensional Lie Algebras

By Corollary 6.2, a description of abelian inner ideals in nondegenerate Artinian Lie al-

gebras can be deduced from a classification of finite Z-gradings of these Lie algebras.

Although this is not very efficient since nonisomorphic Z-gradings can lead to isomor-

phic abelian inner ideals, it nevertheless provides a quick classification of abelian inner

ideals of those Lie algebras for which the finite Z-gradings are known.

As an example, we consider in this subsection a finite-dimensional split simple

Lie algebra L over a field Φ of characteristic 0, and let B ⊂ L be an abelian inner ideal. By

Corollary 6.2, L has a finite Z-grading, say a (2n + 1)-grading, with Ln = B. It is folklore

that the Z-gradings of L are obtained as follows: There exists a splitting Cartan subal-

gebra h of L and a Z-grading of the root system R of (L, h), say R =
⋃n

i=−n Rn such that

Li =
⊕

α∈Ri
Lα, where the Lα are the root spaces of (L, h), in particular Ln = B =

∑
α∈Rn

Lα.

It is therefore enough to determine Rn. This can be done as follows, see e.g. [[19]; 17.4,

17.5]: Any Z-grading (Ri)i∈Z of R is given by a coweight q of R, i.e. a Z-linear map Q(R) →
Z, via Ri = {α ∈ R : q(α) = i}, and any coweight q is uniquely determined by its values

qi = q(βi), where (β1, . . . ,βl) is a root basis of R. One then discusses the possibilities for

the family (qi) keeping in mind that the highest root with respect to (β1, . . . ,βl) lies in
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Rn. As an example, we will give the classification for R = E8 below. Before doing so, we

mention some general facts for L:

• By [[4]; Lemma 1.13] every proper inner ideal of a simple nondegenerate

Artinian Lie algebra is abelian, hence in particular this is so for proper

inner ideals of L.

• The inner ideals coming from a 3-grading of L are well known: They are the

V+-spaces of simple Jordan pairs V whose Tits-Kantor-Koecher algebra

is (isomorphic to) L. Moreover, by Lemma 2.3 (a), a submodule B ⊂ V+ is

an inner ideal of the Lie algebra L if and only if B is an inner ideals of the

Jordan pair V. The latter are well known, see e.g. [21] or [[24]; Section 3].

• If B ⊂ R is a family of pairwise collinear long roots, then B =
⊕

β∈B Lβ is

an abelian inner ideal. This is easily proven using standard facts from

root systems. We note that with b = |B | the corresponding subquotient is

isomorphic to the rectangular matrix pair
(
Mat(1, b,Φ),Mat(b, 1; Φ)

)
=

(I1b in the notation of [16]), and hence the subalgebra g of Theorem 5.5 is

isomorphic to slb+1(Φ).

Example R = E8: We will use the enumeration of the simple roots βi as in [[6];

Planche VII], and let B be the abelian inner ideal associated to Rn with n as in (6.1).

To arrive at the following list of isomorphism classes of abelian inner ideals in E8 one

considers the possibilities for qi, 1 ≤ i ≤ 8, starting with q8. If q8 > 0, then in view of the

known coefficients (mi) of any positive root α =
∑8

i=1 miβi (see [[6]; Planche VII]) we have

|Rn| = 1. If q8 = 0 < q7 then |Rn| = 2. Continuing in this way one arrives at the following

list:

(1) Rn is a family of pairwise collinear roots, 1 ≤ |Rn| ≤ 8. For example, |Rn| = 8

is obtained from q2 > 0 = q3 = · · · = q8.

(2) Rn is a family of 14 roots, obtained from q1 > 0 = q2 = · · · = q8. Two

distinct roots in Rn are either orthogonal or collinear, and there exists

a bijection between Rn and the idempotents in an even quadratic form

grid of 14 idempotents, that preserves orthogonality and collinearity.

The corresponding subquotient is therefore a quadratic form pair of

dimension 14 (IV14 in the notation of [16]), and the Lie algebra g of

Theorem 5.5 is of type D8. The corresponding grading of L is a 5-grading.

Ri consists of those roots whose β1-coefficient is i; we have |R1| = 64 and

|R0| = 84. (L1, L−1) is the Kantor pair of the structurable algebra O ⊗ O,

where O is a split octonion.
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6.2 Abelian Inner Ideals of Finite Length in Simple Infinite-Dimensional Lie Algebras.

In the previous subsection we have seen the relationship between abelian inner ideals (of

finite length) and finite Z-gradings in a finite-dimensional split simple Lie algebra L over

a field Φ of characteristic 0. Let us now analyze this relation in the case of an infinite-

dimensional simple Lie algebra L over a field Φ of characteristic 0. Let B be a nontrivial

abelian inner ideal of finite length of L. Then L has abelian minimal inner ideals, so (see

[7]) L = Soc(L) is 5-graded and there exists a simple associative algebra A with nonzero

socle such that

(i) L = [A,A]/([A,A] ∩ Z(A)) with the induced product of A(−), or

(ii) L = [K,K]/Z(A) ∩ [K,K], where ∗ is an involution of A, K = Skew(A, ∗) and

either Z(A) = 0 or the dimension of A over Z(A) is greater than 16.

On the other hand, by Corollary 6.2, L has a finite Z-grading L = L−n ⊕ · · · ⊕ Ln for which

B = Ln. Let us now see that Corollary 6.2 indeed holds for n = 2, i.e., there exists a 5-

grading of L for which L2 = B.

Proposition 6.5. Let A be an associative algebra and let L = [A,A]/([A,A] ∩ Z(A)).

(a) Let e, f ∈ A be idempotents satisfying fe = 0. Then B = eAf is an abelian

inner ideal of A(−), which is contained in [A,A] and which satisfies B ∩
Z(A) = {0}. Hence B imbeds into the Lie algebra L = [A,A]/([A,A] ∩ Z(A))

and is an abelian inner ideal in L. Moreover:

(i) c = f − ef is an idempotent of A which is orthogonal to e and also satisfies

B = eAc.

(ii) There exists a 5-grading of A as associative algebra, A =
⊕2

i=−2 Ai, such that

B = A2 and

KerA(−)B = {x ∈ A−2 : bxb = 0 for all b ∈ B} ⊕
⊕

i≥−1 Ai.

Assume that A is semiprime or that there exist u2 ∈ A2 and v−2 ∈ A−2

satisfying u2v−2 = e and v−2u2 = c. Then KerA(−)B =
⊕

i≥−1 Ai and the

subquotient of B is isomorphic to the Jordan pair V = (A2,A−2) with

triple product {a, b, c} = abc + cba.

(b) Conversely, if A is simple then every abelian inner ideal B ⊂ L of finite

length is of the form B = eAf , where e, f are orthogonal idempotents.

Moreover, the Jordan pair V = (A2,A−2) described in (a) is simple and

Artinian. �
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Proof.

(a) Clearly B2 = 0, and this easily implies that B = eAf is an inner ideal of A(−).

It is also straightforward to check that c is an idempotent of A which

is orthogonal to e and satisfies ef = efc. From this one deduces that

B = eAc and then that eac = [e, eac] for any a ∈ A. Hence B ⊂ [A,A]

and B ∩ Z(A) = 0. Let Â = Φ1 ⊕ A be the associative algebra obtained

from A by adjoining a unit element 1. Then (e1, e2, e3) = (e, 1 − c − e, c) is

a complete orthogonal system in Â. Let Âjk be the corresponding Peirce

spaces, hence Â =
⊕

1≤i,j≤3 Âjk. Since AÂ + ÂA ⊂ A all Peirce spaces Âjk

with (jk) �= (22) are in fact contained in A and can be defined in A, e.g.

Â11 = {a ∈ A : ea = a = ae}, Â12 = {a ∈ A : ea = a, 0 = a(e + c)}. For

(jk) = (22) we have Â22 = Φe2 ⊕ A22 where A22 = {a ∈ A : (e + c)a =

0 = a(e + c)}. We therefore get a decomposition A =
⊕

1≤j,k≤3 Ajk with

Ajk = Âjk for (jk) �= (22) which behaves like a Peirce decomposition. Put

Ai =
⊕

k−j=i Ajk for −2 ≤ i ≤ 2. Then A =
⊕2

i=−2 Ai is a 5-grading of A

with B = eAc = A13 = A2. The remaining claims of (a) can now easily be

checked.

(b) That in a simple Artinian associative algebra A every abelian inner ideal of

L has the form eAf with fe = 0 is shown in [[4]; Theorem 5.1]. Let us then

suppose that L is not Artinian and let B be a nonzero abelian inner ideal

of finite length. By socle theory for Lie algebras [[7], Theorem 4.5], A has

nonzero socle (as an associative algebra), and since it is not Artinian,

Z(A) = 0. Therefore L = [A,A]. By [[3], Lemma 3.14], b2 = 0 for any b ∈ B.

Hence, for any b, c ∈ B and a ∈ A, we have [[b,a], c] = bac+cab ∈ A, which

implies that B is an inner ideal of the Jordan algebra A(+). But inner

ideals of finite length of A(+) are of the form eAf with e, f idempotents

of A [[8], (16)]. Since b2 = 0 for any b ∈ B, we have fe = 0. Indeed, b2 = 0

for any b ∈ B implies bc + cb = 0 for any b, c ∈ B; on the other hand,

bc−cb = 0 for any b, c ∈ B since B is abelian, hence B2 = 0. Then it follows

by simplicity of A that fe = 0 (otherwise, fe �= 0 would imply A = AfeA,

and hence B = eAf = eAfeAf = B2 = 0). �

Remark 6.6. Recall [13] that a simple associative algebra A with an involution ∗ has

nonzero socle if and only if it is ∗-isomorphic to the algebra of finite rank continuous
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operators (F(X), ∗), where X is a left vector space endowed with a nondegenerate skew-

Hermitian or symmetric form h over a division algebra with involution (∆,−), and where

∗ denotes the adjoint involution. In the last case, ∆ is commutative with the identity

as involution and K = Skew(A, ∗) is the finitary orthogonal algebra fo(X,h) [1]. Given

x, y ∈ X, we write x∗y to denote the linear operator defined by x∗y(x ′) = h(x ′, x)y for all

x ′ ∈ X. Then x∗y ∈ F(X) with (x∗y)∗ = y∗x. Hence [x, y] := x∗y − y∗x ∈ fo(X,h).

Proposition 6.7. Let A be a simple associative algebra with involution ∗ such that either

Z(A) = 0 or the dimension of A over Z(A) is greater than 16. Put K = Skew(A, ∗) and

L = [K,K]/Z(A) ∩ [K,K].

(a) If B is an abelian inner ideal of L of finite length, then either

(i) B = eKe∗ for e ∈ A an idempotent such that e and e∗ are orthogonal, or

(ii) L = fo(X,h) as in Remark 6.6 and there exist a hyperbolic plane H ⊂ X and

a nonzero isotropic vector x ∈ H such that H⊥ does not contain infinite

dimensional totally isotropic subspaces and B is given by B = [x,H⊥] :=

{[x, z] : z ∈ H⊥}.

(b) If B = eKe∗ as in (i), then A has a 5-grading as an associative algebra,

A = A−2 ⊕ A−1 ⊕ A0 ⊕ A1 ⊕ A2, which is induced by the idempotents e

and e∗, cf. Proposition 6.5. Moreover, L is 5-graded with B = eKe∗ = L2.

If B = [x,H⊥] ⊂ L = fo(X,h) as in (ii), then L admits a 3-grading,

L = L−1 ⊕ L0 ⊕ L1, such that B = [x,H⊥] = L1. �

Proof.

(a) We may assume B �= 0, and therefore that L has nonzero socle. Then, by [[7];

Theorem 5.16], A coincides with its socle. We consider two cases.

(1) b2 = 0 for any b ∈ B. If A is Artinian, then we have by [[3]; Theorem 5.5]

that B = eKe∗ for some idempotent e in A satisfying e∗e = 0. As in

Proposition 6.5 we may assume that the idempotents e and e∗ are

orthogonal. If A is not Artinian, then Z(A) = 0 and L = [K,K]. It

then follows from [[9]; Prop. 3.6] that B = eKe∗ as before.

(2) b2 �= 0 for some b ∈ B. Then we have by [[9]; Proposition 3.8] that ∆

is a field with the identity as involution and B = [x,H⊥]. Moreover,

by [[9]; Lemma 3.7], H⊥ cannot contain infinite dimensional totally

isotropic subspaces.

(b) The case B = eKe∗ follows as in the proof of Proposition 6.5 (note that

A∗
i = Ai). If B = [x,H⊥] = L1 as in (ii), let e0, e1, e2 be the canonical
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projections of X = Fx+ ⊕ H⊥ ⊕ Fx− onto Fx+, H⊥, Fx−, respectively. It

is easy to see that e0, e1, e2 are idempotents in L(X), the algebra of all

continuous operators, with e∗0 = e2 and e∗1 = e1, which induce a 5-grading

A = A2 ⊕A1 ⊕A0 ⊕A−1 ⊕A−2 of the simple associative algebra A = F(X).

Moreover, each Ai is invariant under ∗ and Skew(A2, ∗) = Skew(A−2, ∗) =

0. Hence fo(X, q) = Skew(F(X), ∗) = L1 ⊕L0⊕L−1 with Li = Skew(Ai, ∗) and

B = L1. �
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